

Reacting Surfaces for Clean Combustion

José Manuel das Neves Rodrigues (jose.neves.rodrigues@tecnico.ulisboa.pt)

Edgar C. Fernandes

M^a Filipa Ribeiro

IN+ Get Together 2019 September 20th, 2019

Leaders for Technical Industries, Engineering Design and Advanced Manufacturing PhD program, MIT Portugal, Instituto Superior Técnico, University of Lisbon,

Reacting Surfaces for Clean Combustion

Combustion of fuel and air mixture produced non-negligible quantities of NO and NO_2

Reacting catalytic surfaces allow complete combustion at low temperatures

Catalytic materials "facilitate" reaction without being consumed

Low temperature combustion avoids the oxidation of N_2 , leading to near-zero emissions of NO and NO_2

Thin-film metal oxide

Inexpensive metal oxides are good candidates for catalytic material

Pros

No emissions of NOx or CO

Straight-forward fabrication: metal-sheet construction + electroplating (thin-films)

Cons

Metal oxide catalyst development is relatively new.

Metal oxide catalysts degrade rapidly at very high temperatures

R&D in metal oxides is necessary