

Heat transfer enhancement with corrugated tubes

Numerical and Experimental work

Gonçalo Granjal Cruz

Laboratory of Thermofluids, Combustion and Energy Systems Center for Innovation, Technology and Policy Research IN+

IN+ GET TOGETHER

Supervisor(s): Prof. Ana Moita Prof. Miguel Mendes

20th September, 2019

Motivation and Context

Exhaust Heat Recovery system T. Wang, 2001

Plate fin compact heat exchanger Incropera, 2007

Motivation and Context

Review works show a **heat enhancement** obtained when **swirl** is induced in the flow either by active enhancement techniques, where external power is required, and by **passive methods**, that resort to causing **secondary flows via geometry changes** or extended surfaces

Corrugation geometry characteristic dimensions M. Sheikholeslami, 2015

Conclusions

- The corrugated geometry leads to higher heat transfer accompanied by increase pressure losses due to the induced swirl in the flow
- The thermal performance factor, key in the design of heat exchangers, presents the corrugated geometry as more efficient solution, mainly in the low turbulent regime
- Experimental work clearly defines the transition region and the numerical work allows the identification of thermal hotspots

38.632

NusseltNumber

Nusselt number wall distribution

71.023

79.121

Induced swirl streamlines

